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Abstract. Using an iterative construction of the first-order intertwining technique, we findk-
parametric families of exactly solvable anharmonic oscillators whose spectra consist of a part
isospectral to the oscillator plusk additional levels at arbitrary positions belowE0 = 1

2 . It is seen
that the ‘natural’ ladder operators for these systems give place to polynomial nonlinear algebras,
and it is shown that these algebras can be linearized. The coherent states construction is performed
in the nonlinear and linearized cases.

1. Introduction

The generation of exactly solvable potentials using the well known factorization method,
supersymmetric quantum mechanics (SUSY QM) and related subjects is becoming a paradigm
in Schr̈odinger quantum mechanics [1–28]. Nowadays it is realized that the majority of
these procedures arise from a general setting in which a first-order differential operator
intertwines two Hamiltonians [6, 7, 29–31]. This so-called first-order intertwining technique
(FOIT) suggests further generalizations, the most obvious one involving akth-order differential
intertwining operator. By expressing this operator as a sum ofk + 1 termsfi(x) di/dxi, i =
0, . . . , k, introducing it in the intertwining relationship and solving the resulting system of
equations for thefi(x), assuming that one of the Hamiltonians is solvable, a new solvable
Hamiltonian and its eigenstates are generated [32–36].

There is an alternative to deal with the above problem: instead of looking directly for the
kth-order operator one can make the construction by iteratingk first-order transformations.
This last procedure can be implemented either by means of the well known determinant
formulae (see e.g. [34] and references therein) or by the simple iterative construction that
we have recently introduced [31]. From the side of explicit examples, it has been shown
that our procedure works very well to generatek-parametric families of potentials almost
isospectral to the harmonic oscillator, the radial hydrogen-like potentials, and in the free-
particle case [28,31,37].

A parallel development concerning coherent states (CS) for potentials derived by means
of the intertwining technique is on the way [38–51]. Thus, Fukui and Aizawa were able to
derive those states for the Infeld and Hull potentials [38], i.e., for particular cases of the general
families of potentials which can be derived by means of the FOIT. The first work involving CS
for the simplest non-trivial family of potentials strictly isospectral to the oscillator (Abraham–
Moses–Mielnik (AMM) [2, 3]) was done by us in 1994 [39]. Later on various developments
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going deep inside the subject have appeared [40–51]. Thus, Bagrov and Samsonov constructed
the CS for a class of anharmonic oscillators with quasi-equidistant spectra composed by a part
isospectral to the oscillator plus one level below the first excited state at a multiple of the
spacing between the oscillator levels [45]. Almost simultaneously Aizawa and Sato found
some CS for the most general family of potentials almost isospectral to the oscillator that one
is able to derive using the FOIT [48]. Those potentials arise if a new level, at any place below
the ground state energy of the oscillator, is used for the generation process [7,26,31].

Of particular interest for this work is the realization that the ladder operator used to
derive our CS in [39] and its adjoint give place to the so-called nonlinear algebras [26, 48, 52–
54]. Notice that the nonlinear algebra generated by the ‘natural’ ladder operators for the
AMM potentials can be partially linearized [40, 41]. This means that through appropriate
modifications on those ladder operators one can reconstruct the Heisenberg–Weyl algebra
restricted to the subspace spanned by the eigenstates intertwined directly to the oscillator
eigenstates (see also [49]).

The goals of this paper are as diverse as the subjects mentioned above. In the first place,
we want to illustrate how the iteration ofk FOIT works in order to generatek-parametric
families of anharmonic oscillators almost isospectral to the oscillator (see section 2). We
will follow [31] with slight modifications in notation in order to guarantee the most general
results. In section 3 we will show that the ‘natural’ ladder operators for thekth Hamiltonian,
introduced by Mielnik in 1984 fork = 1 [3], lead to polynomial nonlinear algebras of order
2k, as Dubovet al realized for the first time fork = 1 [52]. In section 4 we will discuss the
linearization process for arbitraryk and its relationship with the distorted Heisenberg algebra
introduced in [40]. In section 5 we will construct two sets of CS as eigenstates of the nonlinear
and linearized ‘annihilation’ operators with a discussion about advantages and disadvantages
of both sets. We will finish in section 6 with our conclusions and some comments on the
literature.

2. kth-order intertwining technique (k-SUSY)

Let us consider two Hamiltonians

H0 = −1

2

d2

dx2
+ V0(x) H1 = −1

2

d2

dx2
+ V1(x) (2.1)

and suppose that there exist a first-order differential operatorA
†
1 intertwining them

H1A
†
1 = A†

1H0 (2.2)

where

A
†
1 =

1√
2

(
− d

dx
+ α1(x, ε)

)
. (2.3)

Thus, interelations betweenα1, V0, V1 and afactorization energyε arise:

α′1(x, ε) + α2
1(x, ε) = 2(V0(x)− ε) (2.4)

V1(x) = V0(x)− α′1(x, ε). (2.5)

Let us notice that (2.4), (2.5) guarantee thatH0 andH1 become factorized:

H0 = A1A
†
1 + ε H1 = A†

1A1 + ε (2.6)

where

A1 = 1√
2

(
d

dx
+ α1(x, ε)

)
(2.7)
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is the operator adjoint toA†
1.

Suppose now thatV0(x) is a known solvable potential with eigenfunctionsψ(0)
n (x) and

eigenvaluesEn, n = 0, 1, 2, . . . . Furthermore, let us assume that we have found a solution
α1(x, ε1) to the Riccati equation (2.4) for a given value of the factorization energyε = ε1 < E0,
whereE0 is the ground state energy ofH0. Thus, theV1(x) of (2.5) is a completely specified
solvable potential with normalized eigenfunctions:

ψ(1)
ε1
(x) ∝ exp

(
−
∫ x

0
α1(y, ε1) dy

)
ψ(1)
n (x) = A

†
1ψ

(0)
n (x)√

En − ε1
(2.8)

and eigenvalues{ε1, En, n = 0, 1, 2, . . .}. Let us remark that the restriction above,ε1 < E0,
is imposed in order to avoid the non-normalizability of theψ(1)

n (x) of equation (2.8). This is
also related to the possibility of avoiding the singularities inα1(x, ε1) which would enter into
the new potentialV1(x) of (2.5) and the eigenfunctions (2.8). For a detailed discussion of this
point the reader can seek, e.g., the work of Sukumar [7]. By simplicity, here and throughout
the paper we shall assume that the ground state energy of any new Hamiltonian generated
by means of the FOIT is below the ground state energy of the initial Hamiltonian. We shall
suppose as well that the arbitrary parameter of a general solution of an equation of the kind
(2.4) for a fixedε has been successfully adjusted in order to avoid the singularities in theα.

We would like to iterate the previous technique, taking nowV1(x) as the known solvable
potential and trying to generate a new oneV2(x) using an intertwining operatorA†

2 and a
different factorization energyε2, with ε2 < ε1. The corresponding intertwining relationship,
H2A

†
2 = A†

2H1, leads to equations similar to (2.4), (2.5):

α′2(x, ε2) + α2
2(x, ε2) = 2(V1(x)− ε2) (2.9)

V2(x) = V1(x)− α′2(x, ε2). (2.10)

It is a matter of substitution to show that we have a solution to (2.9) in the form of a finite
difference formula if we know the solutionsα1(x, ε1), α1(x, ε2) to the Riccati equation (2.4)
for two factorization energiesε1, ε2 andV1(x) = V0(x)− α′1(x, ε1) (see [31]):

α2(x, ε2) = −α1(x, ε1)− 2
(ε1− ε2)

α1(x, ε1)− α1(x, ε2)
. (2.11)

Notice that a similar formula has been used by Adler in order to discuss the Backlund
transformations of the Painlevé equations [55]. The eigenfunctions associated toV2(x) are
given by:

ψ(2)
ε2
(x) ∝ exp

(
−
∫ x

0
α2(y, ε2) dy

)
ψ(2)
ε1
(x) = A

†
2ψ

(1)
ε1
(x)√

ε1− ε2
(2.12)

ψ(2)
n (x) = A

†
2ψ

(1)
n (x)√

En − ε2
= A

†
2A

†
1ψ

(0)
n (x)√

(En − ε1)(En − ε2)
. (2.13)

The corresponding eigenvalues are{ε2, ε1, En, n = 0, 1, 2, . . .}.
It is clear that we can continue the iteration of the FOIT as many times as solutions for

different valuesεi to the initial Riccati equation (2.4) we can get. If we knowk of these,
{α1(x, εi), i = 1, 2, . . . , k, εi+1 < εi}, we can iterate the processk times, and a new solvable
HamiltonianHk will be acquired whose potential reads:

Vk(x) = Vk−1(x)− α′k(x, εk) = V0(x)−
k∑
i=1

α′i (x, εi) (2.14)

whereαi(x, εi) is given by a recursive finite difference formula generalizing (2.11):

αi+1(x, εi+1) = −αi(x, εi)− 2
(εi − εi+1)

αi(x, εi)− αi(x, εi+1)
i = 1, . . . , k − 1. (2.15)
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The eigenfunctions are given by:

ψ(k)
εk
(x) ∝ exp

(
−
∫ x

0
αk(y, εk) dy

)
(2.16)

ψ(k)
εk−1
(x) = A

†
kψ

(k−1)
εk−1

(x)√
εk−1− εk (2.17)

...

ψ(k)
ε1
(x) = A

†
k . . . A

†
2ψ

(1)
ε1
(x)√

(ε1− ε2) . . . (ε1− εk)
(2.18)

ψ(k)
n (x) = A

†
k . . . A

†
1ψ

(0)
n (x)√

(En − ε1) . . . (En − εk)
. (2.19)

The corresponding eigenvalues are{εi, En, i = k, . . . ,1, n = 0, 1, 2, . . .}.
In order to make the scheme complete, let us remember how theHi are intertwined:

HiA
†
i = A†

i Hi−1 i = 1, . . . , k. (2.20)

Thus, departing fromH0 we have generated a chain of factorized Hamiltonians:

Hi = A†
i Ai + εi = Ai+1A

†
i+1 + εi+1 i = 1, . . . , k − 1 (2.21)

Hk = A†
kAk + εk (2.22)

where the end potentialVk(x) can be recursively determined by means of (2.14), (2.15) if we
are able to findk solutionsα1(x, εi), i = 1, . . . , k to the Riccati equation (2.4), which means
havingk non-equivalent factorizations of the initial HamiltonianH0:

H0 = 1

2

(
d

dx
+ α1(x, εi)

)(
− d

dx
+ α1(x, εi)

)
+ εi i = 1, . . . , k. (2.23)

Let us notice that there is akth-order differential operator,B†
k = A†

k . . . A
†
1, intertwining

the initialH0 and final HamiltoniansHk:

HkB
†
k = B†

kH0. (2.24)

From equation (2.19) we get:

B
†
kψ

(0)
n (x) =

√
(En − ε1) . . . (En − εk)ψ(k)

n (x) (2.25)

while from the adjoint to (2.24) it turns out that:

Bkψ
(k)
n (x) =

√
(En − ε1) . . . (En − εk)ψ(0)

n (x). (2.26)

These equations are the key to thekth-order supersymmetric quantum mechanics,k-SUSY
[32–36]. In this formalism, a representation of the standard SUSY algebra [8] with two
generators

[Qi,Hss] = 0 {Qi,Qj } = δijHss i, j = 1, 2 (2.27)

is constructed with the aid ofBk andB†
k :

Q =
(

0 0
Bk 0

)
Q† =

(
0 B

†
k

0 0

)
(2.28)

Hss= {Q,Q†} =
(
B

†
kBk 0
0 BkB

†
k

)
=
(
H + 0
0 H−

)
(2.29)
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whereQ1 = (Q† +Q)/
√

2,Q2 = (Q† − Q)/i√2. The SUSY quasi-HamiltonianHss is a
kth-order polynomial

Hss= (Hp
s − ε1) . . . (H

p
s − εk) (2.30)

of the physical HamiltonianHp
s involving thek-intertwined HamiltoniansH0 andHk:

Hp
s =

(
Hk 0
0 H0

)
. (2.31)

If k = 1 we will get the standard representation of the SUSY algebra (2.27), closely related
with the factorization method [6–17]. Ifk = 2 we will get the quadratic superalgebra, or
supersupersymmetric (SUSUSY) QM [35,36], which has proved useful to show that the Witten
index criterion not always characterizes spontaneous SUSY breaking [32].

The previous technique can be applied to the harmonic oscillator potentialV0(x) = x2/2
if we can find solutions to equation (2.4) for some values ofε < 1

2. The first work for
which a general solution to (2.4) was successfully used in order to generate a one-parametric
family of potentials isospectral to the oscillator was done by Mielnik forε1 = − 1

2 [3].
That family had been derived previously by Abraham and Moses using inverse scattering
techniques [2]; those potentials have therefore been referred to as the AMM family [2, 3].
Later on, Sukumar was able to find the most general solution to (2.4) withV0(x) = x2/2 and
an arbitraryε < 1

2 [7], and he generated new one-parametric families of potentials having
spectra{ε, En = n + 1

2, n = 0, 1, 2, . . .}. After that work, reformulations of either some
particular cases or the full Sukumar results have been elaborated [26, 31]. Of special interest
are the results by Junker and Roy, who have expressed the most general solution to (2.4) with
V0(x) = x2/2 and an arbitraryε < 1

2 in terms of confluent hypergeometric functions [26]:

α1(x, ε) = −x +
d

dx

{
ln

[
1F1

(
1− 2ε

4
,

1

2
; x2

)
+ 2ν

0( 3−2ε
4 )

0( 1−2ε
4 )

x 1F1

(
3− 2ε

4
,

3

2
; x2

)]}

= x +
d

dx

{
ln

[
1F1

(
1 + 2ε

4
,

1

2
;−x2

)
+ 2ν

0( 3−2ε
4 )

0( 1−2ε
4 )

x1F1

(
3 + 2ε

4
,

3

2
;−x2

)]}
(2.32)

where, in order to avoid singularities inα1(x, ε), the domain ofν ∈ R has to be restricted to
|ν| < 1.

Suppose now that we choosek of these general solutions (2.32), associated tok fixed
values of the factorization energies{εi, i = 1, . . . , k, εi+1 < εi} and characterized by the
k arbitrary constants{νi, i = 1, . . . , k}. After the iteration ofk FOITs we will have
generated ak-parametric family of solvable anharmonic potentials, labelled by thek parameters
{νi, i = 1, . . . , k}:

Vk(x) = x2

2
−

k∑
i=1

α′i (x, εi). (2.33)

The spectrum of the end HamiltonianHk, intertwined to the harmonic oscillator Hamiltonian
by means of the operatorB†

k , will be {εi, En = n + 1
2, i = k, . . . ,1, n = 0, 1, . . .}, i.e., it

consists of a part isospectral to the oscillator plusk additional levelsεi, i = 1, . . . , k below
E0 = 1

2.
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Figure 1. Schematic representation of thekth-order intertwining operatorsBk, B
†
k and the ladder

operatorsa, a†,Dk,D
†
k for the HamiltoniansH0 andHk .

3. Nonlinear algebra ofHk

We are going to analyse the algebraic structure inherent to the HamiltoniansHk and their
corresponding potentials (2.33). As the spectrum ofHk has a part formed by equally spaced
energies, an idea emerges to look for some ladder operators that would connect the eigenstates
associated to those levels. There is a natural construction for a pair of these operators [3,39,40],
which is guessed from equation (2.24), its adjoint and the standard intertwining relationship
involving the oscillator HamiltonianH0 and its creationa† and annihilation operatora:

(H0 − 1)a† = a†H0 (H0 + 1)a = aH0. (3.1)

The construction is composed of three stages (see figure 1): (i) first we ‘move’ the eigenvectors
|ψk

n 〉 of Hk, represented in the previous section by the wavefunctionsψ(k)
n (x), to the

eigenvectors|ψ0
n 〉 of the oscillator HamiltonianH0 by means of the intertwining operator

Bk. (ii) Then, we move up (|ψ0
n+1〉) or down (|ψ0

n−1〉) on the ladder ofH0 by usinga† or
a respectively, which will cause the effective ‘motion’ up or down on the ladder ofHk. (iii)
Finally, we come back to the ladder ofHk by actingB†

k on|ψ0
n+1〉 or |ψ0

n−1〉. Thus, the ‘natural’
ladder operators forHk can be chosen:

Dk = B†
k aBk D

†
k = B†

k a
†Bk k = 0, 1, 2, . . . (3.2)

where, for completeness, we have extended the intertwining relationship (2.24) in order to
include the case withk = 0 by assuming thatB†

0 = B0 = I , I is the identity operator. The
action ofDk andD†

k is drawn just onto the points associated withEn = n + 1
2, n = 0, 1, . . .

because thek isolated eigenstates{|ψk
εi
〉, i = 1, . . . , k} are annihilated by bothDk andD†

k due
to the fact that they are annihilated byBk.

The ladder operatorsDk andD†
k are differential operators of order(2k + 1)th satisfying:

[Hk,Dk] = −Dk [Hk,D
†
k ] = D†

k . (3.3)

Following the works on the nonlinear generalization of the Fock method made by researchers
at the Lukin Institute [52–54] (see also [56–58]), the Hermitian operatorN(Hk) ≡ D†

kDk is
introduced generalizing the standard number operatorN of the harmonic oscillator. It can be
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easily shown thatN(Hk) is a polynomial inHk of (2k + 1)th order:

N(Hk) ≡ D†
kDk = (Hk − 1

2)

k∏
i=1

(Hk − εi − 1)(Hk − εi) (3.4)

and

DkD
†
k = N(Hk + 1) = (Hk + 1

2)

k∏
i=1

(Hk − εi)(Hk − εi + 1). (3.5)

Thus, the operatorsDk,D
†
k andHk close a polynomial nonlinear algebra of order 2k:

[Dk,D
†
k ] = N(Hk + 1)−N(Hk) = Pk(Hk)

k∏
i=1

(Hk − εi) (3.6)

wherePk(x) is a polynomial inx of orderk of the form:

Pk(x) = (x +
1

2
)

k∏
i=1

(x − εi + 1)− (x − 1

2
)

k∏
i=1

(x − εi − 1)

=
k∑
j=0

(−1)j xk−j
[ j2 ]∑
l=0

2(k − j + l) + 1

2l + 1

(
k − j + 2l

2l

)∑
εi1i2...ij−2l (3.7)

and we have used the compact notation

∑
εi1i2...ij =



0 if j < 0

1 if j = 0
k∑

i1<···<ij
i1,...,ij=1

εi1 . . . εij if j > 0.
(3.8)

For completeness, the anticommutator is written below:

{Dk,D
†
k } = N(Hk + 1) +N(Hk) = Qk(Hk)

k∏
i=1

(Hk − εi) (3.9)

where

Qk(x) = (x + 1
2)

k∏
i=1

(x − εi + 1) + (x − 1
2)

k∏
i=1

(x − εi − 1)

= 2xk+1− 2

( k∑
i=1

εi

)
xk +

k−1∑
j=1

(−1)j+1xk−j
[
2
∑

εi1...ij+1 + (k − j + 1)2

×
∑

εi1...ij−1 +
[ j+1

2 ]∑
l=1

k − j + l + 1

l + 1

(
k − j + 2l + 1

2l + 1

)∑
εi1...ij−2l−1

]

+(−1)k+1
[ k−1

2 ]∑
l=0

∑
εi1...ik−2l−1. (3.10)

For consistency, whenk = 0 we should get the standard Heisenberg–Weyl algebra because
D0 = a andD†

0 = a†. This linear case is indeed recovered from our formulae due to the fact
thatP0(H0) = I andQ0(H0) = 2H0, which implies that

[H0,D0] = −D0 [H0,D
†
0] = D†

0 [D0,D
†
0] = P0(H0) = I. (3.11)
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The corresponding Fock operator becomes the standard linear expression in terms of the
oscillator HamiltonianH0:

N(H0) = H0 − 1
2 = N. (3.12)

On the other hand, whenk = 1 andε1 is arbitrary we recover the expression of Aizawa and
Sato for [D1,D

†
1], i.e., a quadratic algebra arises [48] (see also [52–54]):

[D1,D
†
1] = (H1− ε1)(3H1− ε1). (3.13)

The Fock operator now becomes cubic inH1:

N(H1) = (H1− 1
2)(H1− ε1)(H1− ε1− 1). (3.14)

If k = 2 we will get a polynomial algebra of fourth order:

[D2,D
†
2] = (H2 − ε1)(H2 − ε2)[5H

2
2 − 3(ε1 + ε2)H2 + ε1ε2 + 1] (3.15)

and a polynomial of fifth order forN(H2):

N(H2) = (H2 − 1
2)(H2 − ε1)(H2 − ε2)(H2 − ε1− 1)(H2 − ε2 − 1). (3.16)

For generalk, a polynomial nonlinear algebra of order 2k arises whose properties are
characterized by the(2k + 1)th-order polynomialN(Hk) of (3.4).

Let us notice that the polynomial algebras (3.3)–(3.6) are particular cases of theW2k+1

algebras [26, 59–62], and they have been related to theW1+∞ algebras fork = 1 [48]. As
already mentioned, they also represent concrete realizations of the generalized Fock method
introduced at the beginning of the 1990s [52–54] (some of these ideas can be found in previous
works [56, 57]). In order to clarify some points, let us mention some facts of that method
which will be useful for our treatment.

Suppose that relations (3.3), (3.4) involve quite general ladder operatorsE+, E− and
HamiltonianH . If it is assumed thatE+ andE− are differential operators of order(2k + 1)th,
we could thus obtain potentials whose spectra would consist of at most(2k + 1) superposed
ladders because the generalized number operator would be a polynomial of order(2k + 1)th:

[H,E+] = E+ [H,E−] = −E− N(H) = E+E− =
2k+1∏
i=1

(H − ri) (3.17)

where it is assumed that all the roots{ri, i = 1, . . . ,2k + 1} of N(H) are real. The number
and length of the ladders depends on the properties of the Kernel ofE−, i.e., of the solutions
to the(2k + 1)th-order linear differential equation:

E−ψ = 0. (3.18)

Suppose that there existsm square integrable linearly independent solutions of (3.18). Due to
the fact that:

E+E−ψ =
2k+1∏
i=1

(H − ri)ψ = 0 (3.19)

we can choosem such solutions,ψg

i (x), orthogonal to each other, which are simultaneously
eigenfunctions ofH with eigenvaluesri, i = 1, . . . , m. If there is no degeneration modulol
with some other of thek −m rootsri, i = m + 1, . . . , k, then the spectrum ofH will consist
of m infinite ladders with spacing1E = 1, each one of them starting from one of theri ,
i = 1, . . . , m. It could happen, however, that after applyingl times the operatorE+ onto
some of the ground states, let us say thej th one, we would have that(E+)l−1ψ

g

j 6= 0 but
(E+)lψ

g

j = 0. AsH [(E+)l−1ψ
g

j ] = (rj + l − 1)ψg

j , we would have:

0= E−(E+)lψ
g

j =
2k+1∏
i=1

(H − ri + 1)[(E+)l−1ψ
g

j ] =
2k+1∏
i=1

(rj + l − ri)[(E+)l−1ψ
g

j ]. (3.20)
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This means that one of theri , i = m+ 1, . . . , k would have to be of the formri = rj + l, l > 0.
If this happens, instead of havingm infinite ladders we would generate justm − 1 infinite
ladders and one finite of the lengthl, starting withrj and ending atrj + l − 1, l > 0.

By comparing these ideas with ourk-SUSY treatment it is clear now why the roots of the
polynomial (3.4) are precisely{ 12, εi, εi +1, i = 1, . . . , k}: ourk-SUSY HamiltoniansHk have
preciselyk + 1 ground states associated to thek + 1 roots (eigenvalues){ 12, εi, i = 1, . . . , k}.
As the ladder starting with12 is infinite, this does not impose any restriction on the otherk roots
of the(2k + 1)th-order polynomial (3.4). However, as the ladders starting withεi are finite of
length equal to 1 (they end at the initial energyεi), the otherk roots have to be precisely of the
form εi + 1, i = 1, . . . , k, as in our polynomial (3.4).

An interesting point concerning the nonlinear nature of the polynomial algebras (3.3)–
(3.6) in the standard SUSY case (withk = 1) is that they can be linearized [40,41]. We shall
show next that the same procedure can be implemented for arbitraryk.

4. Linearization of the nonlinear algebra ofHk

As pointed out in sections 2 and 3, thek isolated eigenstates|ψk
εi
〉, i = 1, . . . , k of Hk

are not interconnected between themselves or with the rest of the spectrum by our ladder
operators. Hence, it is natural to perform the linearization on the subspace spanned by
{|ψk

n 〉, n = 0, 1, 2, . . .}. The essence of this procedure, introduced in [40] fork = 1, is
to modify the ladder operatorsDk andD†

k of (3.2) in order to construct an algebraic structure
similar to the Heisenberg–Weyl algebra. As for the sub-basis{|ψk

n 〉, n = 0, 1, . . .} the
commutator [Dk,D

†
k ] is already diagonal (see equation (3.6)), we should make a modification

that would not change [Hk,Dk] = −Dk and [Hk,D
†
k ] = D†

k but would convert most of the
diagonal elements of [Dk,D

†
k ] to 1. With this aim, we propose two new ladder operatorsDL

andD†
L in the form:

DL = B†
k f (N)aBk D

†
L = B†

k a
†f (N)Bk (4.1)

whereN = a†a is the standard number operator of equation (3.12),f (x) is a real function to
be determined, and the subscriptL indicates linearization. We ask that [DL,D

†
L] = I on the

subspace spanned by{|ψk
n 〉, n = 1, 2, . . .}, which will be denotedH>1. Notice that we leave

open the possibility that [DL,D
†
L]|ψk

0〉 = c|ψk
0〉, c ∈ R, c 6= 1. Recently, Seshadriet al have

further relaxed this possibility fork = 1 by asking that [DL,D
†
L] takes arbitrary independent

values on|ψk
n 〉, n = 0, 1, 2, . . . whenH1 is isospectral to the oscillator [49]. In this paper

we will restrict ourselves to the simplest variant of the linearization, which coincides with the
assumptions made initially.

Making use of equations (2.25), (2.26) and (3.1) it is easy to show that

[DL,D
†
L]|ψk

n 〉 = [g(n + 1)− g(n)]|ψk
n 〉 (4.2)

where

g(n) =
[ k∏
i=1

(n− εi − 1
2)(n− εi + 1

2)

]
[f (n− 1)]2n. (4.3)

As we are asking that [DL,D
†
L] = I onH>1, we end up with the following finite difference

equation:

g(n + 1)− g(n) = 1 n = 1, 2, . . . (4.4)

whose general solution is given by:

g(n) = n +w(n) (4.5)
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wherew(n) is periodic with period one,w(n + 1) = w(n), n = 1, 2, . . . . Hence:

f (n− 1) =
√

n +w(n)

n
∏k
i=1(n− εi − 1

2)(n− εi + 1
2)
. (4.6)

As w(n) takes the same value for alln = 1, 2, . . . , it is important that justw ≡ w(1).
Moreover, asf (n− 1) should be real⇒ w > −1. Collecting all this information, we arrive
finally at the ladder operators we were looking for:

DL = B†
k

√
N + 1 +w

(N + 1)
∏k
i=1(N − εi + 1

2)(N − εi + 3
2)
aBk (4.7)

D
†
L = B†

k a
†

√
N + 1 +w

(N + 1)
∏k
i=1(N − εi + 1

2)(N − εi + 3
2)
Bk. (4.8)

Although apparently more complicated than theDk andD†
k of the nonlinear algebra (see

(3.2)),DL andD†
L act simpler than those operators on the energy eigenstates|ψk

n 〉, n = 0, 1, . . .
(excepting the case withk = 0 which is discussed at the end of this section):

DL|ψk
n 〉 = (1− δn0)

√
n +w|ψk

n−1〉 (4.9)

D
†
L|ψk

n 〉 =
√
n +w + 1|ψk

n+1〉 (4.10)

[DL,D
†
L]|ψk

n 〉 = (1 +wδn0)|ψk
n 〉. (4.11)

Contrary to what happens withDk andD†
k , this action is independent ofk, i.e., of the number

of iterations of the FOITs needed to go fromH0 toHk. Thus, this kind of linearization gives
place to a universal representation of the algebra characteristic of any solvable Hamiltonian
intertwined to the harmonic oscillator through the iteration ofk FOITs. As we can see, we
have constructed once again the ‘distorted’ Heisenberg algebra introduced some time ago
to linearize the nonlinear algebra of order two characteristic of the AMM potentials, where
w > −1 is the distortion parameter [40]. Here we have shown that this algebra is also the
quasi-linearized version of the nonlinear algebras of order 2k if we restrict ourselves toH>1

andw is left arbitrary. If we want a ‘complete’ linearization onH>0 (the subspace spanned by
{|ψk

n 〉, n = 0, 1, . . .}), we should takew = 0 in order to get precisely the Heisenberg–Weyl
algebra:

DL|ψk
n 〉 =
√
n|ψk

n−1〉 D
†
L|ψk

n 〉 =
√
n + 1|ψk

n+1〉 [DL,D
†
L]|ψk

n 〉 = |ψk
n 〉. (4.12)

Let us notice that ifw = −1 we will get once again the Heisenberg–Weyl algebra onH>1,
but now the state|ψk

0〉 will be annihilated byDL andD†
L. In this way we can isolateby

hand |ψk
0〉 of the rest of eigenstates ofHk; this isolation isnatural for the otherk eigenstates

|ψk
εi
〉, i = 1, . . . , k.
The curious case withk = 0 is worthy of discussion. The intertwining in this case is

trivial: each eigenstate of the oscillator is mapped into itself without creating any new level
becauseB0 = B†

0 = I . The quasi-linearization introduced above forw arbitrary can be seen as
a distortion of the representation of the Heisenberg–Weyl algebra which changes the operators
a, a† intoDL,D

†
L by changing the values of the non-null matrix elements ofa anda† in the

basis|ψ0
n 〉 but without changing the diagonal elements of [a, a†] in the same basis excepting

the one associated to|ψ0
0〉, which becomes equal tow + 1. This is clear from the explicit

expressions ofDL andD†
L for k = 0:

DL =
√
N + 1 +w

N + 1
a D

†
L = a†

√
N + 1 +w

N + 1
. (4.13)
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Notice once again that whenw = 0 we recover the original Heisenberg–Weyl algebra because
in this caseDL = a,D

†
L = a†. Moreover, whenw = −1 we will get a reduced reducible

representation becoming the Heisenberg–Weyl algebra representation onH>1 and the null
representation on the subspace generated by|ψ0

0〉 because this state is annihilated byDL and
D

†
L.

5. Coherent states ofHk

The beautiful properties of the coherent states for the harmonic oscillator motivated the interest
in looking for them in other physical situations [63–67]. It is well known that there are various
definitions, each one of them leading to sets of CS with, in general, different properties.
Concerning the intertwining technique, CS which are eigenstates of certain annihilation
operator for the potentials of the Infeld and Hull classification [1] were derived by Fukui
and Aizawa [38]. As is well known, however, those potentials are particular cases of the
general families which can be generated by means of the intertwining technique. The first set
of CS associated to a full family of potentials generated in this way was derived by ourselves
as eigenstates of the annihilation operatorDk of (3.2) in the case withk = 1 for the AMM
family of potentials isospectral to the oscillator [39]. Soon after, the linearization process for
the same family of potentials was performed, as presented in section 4, and the corresponding
CS derivation was also elaborated [40, 41]. Since then, a lot of works have arisen looking
for interrelations between CS and quantum groups, pseudodifferential operators, nonlinear
algebras, etc [42–51].

Here, we will look for the CS as eigenstates of the ‘annihilation’ operatorsDk andDL of
the previous sections. First, let us determine the CS which are eigenstates ofDk (the nonlinear
case):

Dk|z〉 = z|z〉 z ∈ C. (5.1)

As usual, we express|z〉 as a linear combination of the subset of eigenstates|ψk
n 〉 of Hk

associated to the part of the spectrum isospectral to the oscillator:

|z〉 =
∞∑
n=0

cn|ψk
n 〉. (5.2)

After inserting (5.2) in (5.1) we will obtain a recurrence relationship for the coefficientscn

cn+1 = z√
(n + 1)

∏k
i=1(n− εi + 1

2)(n− εi + 3
2)

cn (5.3)

and all of them can be expressed in terms ofc0, which is fixed by the normalization condition
〈z|z〉 = 1 and the requirement thatc0 ∈ R+. Hence, these CS become:

|z〉 =
∞∑
n=0


√√√√ k∏

i=1

0(−εi + 1
2)0(−εi + 3

2)z
n|ψk

n 〉

×
[
n!0F2k(−ε1 + 1

2, . . . ,−εk + 1
2,−ε1 + 3

2, . . . ,−εk + 3
2; r2)

×
k∏
i=1

0(n− εi + 1
2)0(n− εi + 3

2)

]−1/2
]

(5.4)

where0(x) is the Gamma function,r = |z|, andpFq is a generalized hypergeometric function:

pFq(a1, . . . , ap, b1, . . . , bq; x) = 0(b1) . . . 0(bq)

0(a1) . . . 0(ap)

∞∑
n=0

0(a1 + n) . . . 0(ap + n)

0(b1 + n) . . . 0(bq + n)

xn

n!
. (5.5)
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Notice thatz = 0 is a (k + 1)th degenerate eigenvalue ofDk because of (5.4) we see that
|z = 0〉 = |ψk

0〉 whileDk|ψk
εi
〉 = 0, i = 1, . . . , k because the|ψk

εi
〉 are isolated from the other

eigenstates. Thus, the resolution of the identity should be looked for as:

I =
k∑
i=1

|ψk
εi
〉〈ψk

εi
| +
∫
|z〉〈z| dµ(z) (5.6)

where dµ(z) is to be determined. Suppose now that

dµ(z) = 0F2k(−ε1 + 1
2, . . . ,−εk + 1

2,−ε1 + 3
2, . . . ,−εk + 3

2; r2)h(r2)r dr dϕ. (5.7)

Inserting this equation in (5.6) and using the fact that{|ψk
εi
〉, |ψk

n 〉, i = 1, . . . , k, n = 0, 1, . . .}
is complete, we arrive at the following requirement forh(x):∫ ∞

0
xnh(x) dx = 0(n + 1)

∏k
i=10(n− εi + 1

2)0(n− εi + 3
2)

π
∏k
i=10(−εi + 1

2)0(−εi + 3
2)

. (5.8)

Hence,h(x) is the inverse Mellin transform of the right-hand side of (5.8). It turns out that
h(x) is proportional to a MeijerG-function [68]:

h(x) = G2k+1
0

0
2k+1(x|0,−ε1− 1

2, . . . ,−εk − 1
2,−ε1 + 1

2, . . . ,−εk + 1
2)

π
∏k
i=10(−εi + 1

2)0(−εi + 3
2)

. (5.9)

Let us notice that in the casek = 1 andε1 = − 1
2 it reduces to the result we have derived

in [39], which was expressed in a more compact form recently by Cannataet al for an arbitrary
ε1 <

1
2 [50].

Some other properties of the standard coherent states have their respective analogue for
the ones presented here. For instance, any CS of the form (5.4) can be expressed in terms of
the others:

|z′〉 =
∫
|z〉〈z|z′〉 dµ (z) (5.10)

where the reproducing Kernel〈z|z′〉 can be easily evaluated:

〈z|z′〉 = 0F2k(−ε1 + 1
2, . . . ,−εk + 1

2,−ε1 + 3
2, . . . ,−εk + 3

2; z̄z′)
×[ 0F2k(−ε1 + 1

2, . . . ,−εk + 1
2,−ε1 + 3

2, . . . ,−εk + 3
2; r2)

× 0F2k(−ε1 + 1
2, . . . ,−εk + 1

2,−ε1 + 3
2, . . . ,−εk + 3

2; r ′2)]−1/2 (5.11)

meaning that any two CS|z〉 and|z′〉 of (5.4) are non-orthogonal. From the resolution of the
identity it is clear that any state vector can be expressed in terms of our CS if we include the
atypical orthogonal CS|ψk

εi
〉, i = 1, . . . , k naturally inherent to this treatment.

Let us now evaluate the coherent states associated with the linearized annihilation operator
DL of (4.7). Similar to the previous case, we look for states|z,w〉 such that:

DL|z,w〉 = z|z,w〉 (5.12)

where we have explicitly shown the CS dependence on the distortion parameterw. Following
the same procedure as before, we arrive at the final expression for|z,w〉:

|z,w〉 =
√

0(w + 1)

1F1(1, w + 1; r2)

∞∑
n=0

zn√
0(n +w + 1)

|ψk
n 〉. (5.13)

Once again, the resolution of the identity becomes similar to (5.6):

I =
k∑
i=1

|ψk
εi
〉〈ψk

εi
| +
∫
|z,w〉〈z,w| dµL (z) (5.14)
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where

dµL (z) = σ(r, w)r dr dϕ σ(r, w) = 1F1(1, w + 1; r2)

π0(w + 1)
e−r

2
r2w. (5.15)

The reproducing Kernel is now

〈z,w|z′, w〉 = 1F1(1, w + 1; z̄z′)√
1F1(1, w + 1; r2) 1F1(1, w + 1; r ′2)

. (5.16)

Let us notice that the CS (5.13) can be acquired from the ones of [40] by makingw→ w+1.
In the casew = 0 (the full linearized case) the same formulae as for the standard coherent
states are recovered by noticing that1F1(1, 1; r2) = er

2
. By taking carefully the limitw→−1

(the full linearized case once again) it can be shown that the standard expression for the CS is
also recovered, but the eigenstate|ψk

0〉 associated with the eigenvalueE0 = 1
2 will be isolated

of the other ones, i.e., the series (5.13) will start from|ψk
1〉 [40,41].

A comparison of the ‘annihilation’ operatorsDk andDL and of both sets of coherent
states derived in this section shows the following: from the side of their explicit expressions,
the nonlinear operatorDk is simpler than the linearized oneDL. As can be seen by equations
(5.4) and (5.13), however, the CS associated toDL are much simpler than the ones associated
withDk, which is due to the simplest algebra generated byDL andD†

L. In order to give more
support to this conclusion, let us compare the uncertainty product(1x)(1p) for both sets of
CS. As fork = 1 such a comparison has been already performed for the AMM family of
potentials isospectral to the oscillator in the oscillator limit [39–41], takingk = 1, ε1 = − 1

2
andν1 = 0 in the potentials (2.32), (2.33), we shall stick just to an analogue situation in
the case withk = 2. Thus, by takingε1 = − 1

2, ε2 = − 3
2 and labeling asν1 andν2 the

parameters of the corresponding solutions (2.32), we will get once again, up to a displacement
of the energy origin, the two-parametric family of potentials (2.33) isospectral to the oscillator
recently derived [36], where in order to avoid singularities we have to make the restrictions
|ν1| < 1 and|ν2| > 1. In order to pick out the oscillator potential, we have to takeν1 = 0 and
ν2→∞. Assuming all this, we arrive finally at the two sets of coherent states which will be
compared:

|z〉NL =
√

2

0F4(1, 2, 2, 3; r2)

∞∑
n=0

zn

n!(n + 1)!
√
(n + 2)!

|ψ0
n+2〉 (5.17)

|z,w〉L =
√

0(w + 1)

21F1(1, w + 1; r2)

∞∑
n=0

zn√
0(n +w + 1)

|ψ0
n+2〉. (5.18)

Above, the subscriptsNL andLmean nonlinear and linear, respectively. A direct calculation
leads to the uncertainties1x and1p in the nonlinear case:

1x =
√

5
2 − [Re(z)]2ρ(r) (5.19)

1p =
√

5
2 − [Im (z)]2ρ(r) (5.20)

where Re(z) and Im(z) represent the real and imaginary parts ofz, respectively, and

ρ(r) = 1

2

[
0F4(2, 2, 3, 3; r2)

0F4(1, 2, 2, 3; r2)

]2

− 1

6

[
0F4(2, 3, 3, 4; r2)

0F4(1, 2, 2, 3; r2)

]
. (5.21)

A plot of the uncertainty product(1x)(1p) is given in figure 2.
On the other hand, in the linear case withw arbitrary the uncertainties1x and1p of

(5.18) will have terms involving square roots of rational functions of the summation index. In
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Figure 2. The uncertainty product(1x)(1p) as function ofz for the nonlinear coherent states
(5.17) associated with the member of the two-parametric family of potentials isospectral to the
oscillator arising fork = 2, ε1 = − 1

2 , ε2 = − 3
2 , ν1 = 0, ν2→∞.

Figure 3. The uncertainty product(1x)(1p) as function ofz for the linear coherent states (5.18)
with w = 2 associated with the member of the two-parametric family of potentials isospectral to
the oscillator arising fork = 2, ε1 = − 1

2 , ε2 = − 3
2 , ν1 = 0, ν2→∞.

order to avoid that, we decided to makew = 2 (this is an interesting value additional to the
ones previously mentionedw = 0 andw = 1 [40]), and in such a case we have:

(1x)2 = (1p)2 = (1x)(1p) = 1

2
+

2

1F1(1, 3; r2)
. (5.22)

A plot of the product(1x)(1p) is given in figure 3.
As we can see,(1x)(1p) has more involved behaviour in the nonlinear than in the linear

case withw = 2. Notice also that(1x)(1p) in the linear case differs from the standard result
(1x)(1p) = 1

2 only in the vicinity ofz aroundz = 0, and it quickly approaches the standard
behaviour when|z| → ∞ (see figure 3). This does not happens for the nonlinear CS for which
the asymptotic value of(1x)(1p) depends on the direction in which we are moving out of
z = 0, and it is in general different from1

2. This reinforces the idea that the linear CS are
closer to the standard CS than the nonlinear ones.

This discussion leads us to conclude that, from an algebraic point of view, the most
appropriate annihilation and creation operators for thek-parametric families of potentials
almost isospectral to the oscillator derived by thekth-order intertwining technique are the
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linearized onesDL andD†
L. They mimic the annihilation and creation operatorsa anda† of

the harmonic oscillator and lead to the standard expression for the CS in the case when the
distortion parameterw takes the two valuesw = 0 andw = −1 when acting on the subspaces
H>0 andH>1, respectively. Moreover,DL andD†

L become exactly equal toa anda† when
k = w = 0, and the corresponding CS, generated by usingDL orD0, are precisely the standard
CS for the harmonic oscillator.

6. Conclusions and remarks

We have shown that, fork-SUSY potentials intertwined to the harmonic oscillator potential
throughkth-order differential operators, annihilation and creation operators,DL andD†

L, can
be constructed obeying the Heisenberg–Weyl algebra (see equation (4.12)) when restricted to
the subspaceH>0 spanned by the eigenstates associated to the levelsEn = n+ 1

2, n = 0, 1, . . . .
Both of those operators annihilate in a natural way the otherk energy eigenstates|ψk

εi
〉, i =

1, . . . k, and the coherent states associated toDL have the form of the standard CS working on
H>0.

Now, some comments about the terminology used to designate the potentials (2.33) with
k = 1 should be mentioned. Some people name the potentials (2.33) conditionally exactly
solvable because the parameters appearing inside (ε1, ν1) have to be restricted in order to
get a potential and eigenfunctions physically relevant (see e.g. [26]), whereν1 denotes the
ν-parameter arising in (2.32). For instance, takingk = 1 andε1 = − 1

2 one will get the AMM
family of potentials, which are physically relevant (and thus conditionally exactly solvable) if
|ν1| < 1 because then they are free of singularities and their eigenfuntions are continuous for
all x ∈ R, as for the initial harmonic oscillator potential. However, this interpretation is narrow
because it excludes a physically interesting exactly solvable case arising when|ν1| → ∞: in
such a limitV1(x) has a singularity atx = 0, and thus it is possible to take instead of the
oscillator in the full real line as the initial exactly solvable potential, the oscillator potential for
x > 0 with an infinite barrier atx = 0 [27]. The corresponding SUSY partner potential will
be also exactly solvable. Thus, care should be exercised when using that terminology.

An additional point concerns the coherent states for thek-SUSY potentialsVk(x). After
[39–41] had arisen, Kumar and Khare considered as unnecessary our CS construction with
k = 1 andε1 = − 1

2 because in this caseH1 andH0 are (up to a displacement of the energy
origin) exactly isospectral. Thus,H1 andH0 are in principle unitarily equivalent, and the
most appropriate CS forH1 should be acquired from the action of such unitary transformation
on the standard CS of the harmonic oscillator [43]. However, even for the simple case with
k = 1 and an arbitraryε1 <

1
2 the construction of Kumar and Khare can hardly be done, while

our technique can be implemented without any problem (see also [48–50]). In such a case
an interesting alternative (although much more complicated than ours) would be to use the
Bagrov and Samsonov CS construction [45]. From an algebraic point of view, the technique
presented in this paper is (we hope) clearer, more general, and largely more natural than the
alternatives developed up to the present by other authors.
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